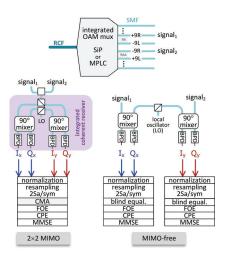
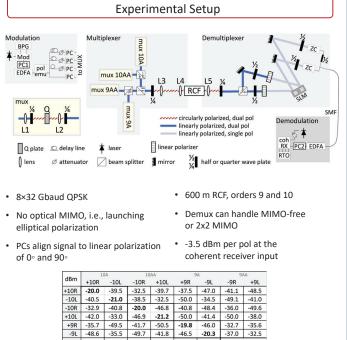
Copyright (c) 2022 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE, by emailing pubs-permissions@ieee.org

Expanded Modal Capacity for OAM with Standard 2×2 MIMO


Mai Banawan¹, Satyendra K. Mishra¹, Ariane Gouin¹, Nathalie Bacon¹, Xun Guan^{1,2}, Lixian Wang³, Sophie LaRochelle¹, and Leslie A. Rusch¹ ¹Electrical and Computer Engineering, Center for Optics, Photonics and Lasers (COPL), Universitie Laval, Québec, Canada, "rusch@gel.ulaval.ca ²now with Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China ³Canada Research Center, Huawei Technologies Canada, Ottawa, Ontario, Canada


Abstract

Standard commercial, electronic 2×2 MIMO can greatly extend modal multiplexing compared to MIMO-free strategies. We experimentally demonstrate the highest bit rates achieved with multiplexing of orbital angular momentum (OAM) modes at 475 Gb/s per wavelength. Our demultiplexing strategies are compatible with commercial solutions.

Compatibility with Commercial Receivers

- MIMO-free reception and 2×2 MIMO use similar hardware and differ in DSP
- MIMO-free reception has one equalizer per channel, 2×2 MIMO has four equalizers per two channels

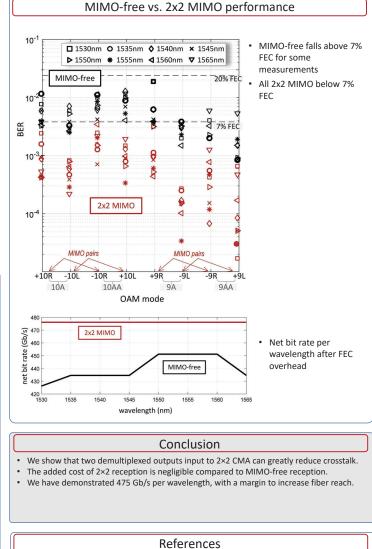
-9R -41.0 -49.0

-36.0 -49.5

+9L -47.9 -41.4 -49.0 -36.4 -39.7 -31.9 -42.6

-32.4 -37.0

-19.7 -41.5


-19.6

Experimental Setup

XT (dB)	10A		10AA		9A		9AA	
	+10R	-10L	-10R	+10L	+9R	-9L	-9R	+9L
worst single ch.	-12.9	-12.0	-12.5	-11.3	-12.6	-11.6	-13.0	-12.9
next worst single ch.	-15.7	-14.5	-16.0	-15.2	-17.7	-14.2	-16.3	-16.0
total	-9.8	-8.7	-9.7	-8.8	-10.3	-8.5	-9.7	-9.7

• 2×2 MIMO used to eliminate the worst-case XT

• Worst XT comes from RCF, next worst XT comes from mux/demux

- 1. N. Bozinovic, et al., *science*, vol. 340, no. 6140, pp. 1545–1548, 2013.
- 2. K. Ingerslev, et al., Optics express, vol. 26, no. 16, pp. 20 225-20 232, 2018
- R. Ryf, et al., in Frontiers in Optics 2012/Laser Science XXVIII, ser. OSA Technical Digest (online), Optical Society of America, FW6C.4
- 4. L. A. Rusch, et al., IEEE Communications Magazine, vol. 56, no. 2, pp. 219–224, 2018
- 5. Z. Lin, et al., in 2021 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2021.
- 6. Y. Chen, et al., IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–7, 2020
- 7. M. Banawan, et al., in 2022 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2022.
- 8. M. Banawan, et al., in *Journal of Lightwave Technology*, vol. 39, no. 2, pp. 600–611, 2020.